
https://doi.org/10.1007/s00165-018-0471-5
BCS © 2018
Formal Aspects of Computing (2019) 31: 207–230

Formal Aspects
of Computing

Automated mutual induction proof
in separation logic
Quang-Trung Ta1, Ton Chanh Le2, Siau-Cheng Khoo1, Wei-Ngan Chin1

1 Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore
2 Department of Computer Science, Stevens Institute of Technology, Hoboken, USA

Abstract. Wepresent a deductive proof system to automatically prove separation logic entailments bymathemat-
ical induction. Our technique is called themutual induction proof. It is an instance of the well-founded induction,
a.k.a., Noetherian induction. More specifically, we propose a novel induction principle based on a well-founded
relation of separation logic models.We implement this principle explicitly as inference rules so that it can be easily
integrated into a deductive proof system. Our induction principle allows a goal entailment and other entailments
derived during the proof search to be used as hypotheses to mutually prove each other. This feature increases
the success chance of proving the goal entailment. We have implemented this mutual induction proof technique
in a prototype prover and evaluated it on two entailment benchmarks collected from the literature as well as
a synthetic benchmark. The experimental results are promising since our prover can prove most of the valid
entailments in these benchmarks, and achieves a better performance than other state-of-the-art separation logic
provers.

Keywords: Separation logic; Entailment proving; Mathematical induction; Mutual induction

1. Introduction

Separation logic has been actively developed in the past two decades as a promising formalism to reason about
the memory-safety of imperative programs that manipulate data structures. For example, it has been utilized by
industrial static analysis tools such as SLAyer [BCI11] and Infer [Cal+15] to find memory bugs in kernels and
drivers of modern operating systems, system code libraries, and mobile applications. One of the pivotal features
that makes the success of separation logic is the separating conjunction operator (∗), which specifies the split of
program memory in disjoint regions. In particular, the formula p ∗ q denotes a memory portion which can be
decomposed into two disjoint sub-portions respectively held by p and q [Rey02]. Moreover, separation logic also
allows users to define inductive heap predicates. The combination of the separating conjunction and inductive
heap predicates enables separation logic to expressively model recursive data structures, such as linked lists, trees,
and graphs [Rey02].

Correspondence and offprint requests to: Q.-T. Ta, Email: taqt@comp.nus.edu.sg

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-018-0471-5&domain=pdf

208 Q.-T. Ta et al.

However, the above expressiveness of separation logic also poses challenges in proving the validity of en-
tailments. These entailments are generated as verification conditions when reasoning about computer programs.
Moreover, proving their validity is usually considered as themain operation in program verification. Considerable
researches have been conducted on the problem of proving separation logic entailments. They include the works
that are based on or similar to mathematical induction [Bro07, BDP11, CJT15]. Particularly, Brotherston et al.
[Bro07, BDP11] propose a proof technique named cyclic proof. This technique allows a proof tree to contain
cycles, which can be perceived as an infinite derivation tree. Furthermore, during the proof derivation, induction
hypotheses are not explicitly identified via applications of induction rules; instead, they are implicitly obtained
via the discovery of valid cycles in the proof tree. Consequently, a soundness condition needs to be checked
globally on the entire proof tree. On the other hand, Chu et al. [CJT15] present an entailment proof system based
on structural induction. Their system dynamically utilizes entailments derived during a proof search as induction
hypotheses to prove new entailments generated in the same proof path. When applying an induction hypothesis,
it performs a local check to ensure that predicates in target entailments are substructures of a corresponding
predicate in the induction hypothesis. However, this technique does not admit induction hypotheses obtained
from different proof paths.

In this work, we develop a deductive system to prove separation logic entailments by mathematical induction.
Our technique is an instance of the well-founded induction, a.k.a., Noetherian induction [Bun01], where we
propose a novel induction principle based on a well-founded relation of separation logic models. Generally,
proof techniques based on Noetherian induction are often classified into two categories, i.e., explicit and implicit
induction, and each of thempresents advantages over the other [Bun01].We follow the explicit inductionmethods
to implement the induction principle as inference rules so that it can be easily integrated into a deductive system.
Also, the soundness condition can be checked locally in each inference rule application, using a selected global
view of the proof tree which is collected during the proof search.Moreover, since thewell-founded relation defined
in our induction principle does not depend directly on any substructure relation, induction hypotheses gathered
in one proof path can be applied at other paths of the proof tree. Thus, this induction principle also favorsmutual
induction, a natural feature of implicit induction, in which the goal entailment and other entailments derived
during the proof search can be used as hypotheses to prove each other. Our proof technique, therefore, does not
restrict induction hypotheses to be collected from only one proof path, but rather from all derived paths of a
proof tree.

Contributions. In summary, our work makes the following contributions:

- We define a well-founded relation on separation logic models and use it to construct a novel mutual induction
principle to prove separation logic entailments.

- We develop a deductive system for proving entailments based on the proposed mutual induction principle.
Our system can prove entailments more effectively since it allows entailments derived in a proof tree to be
used as hypotheses to prove other entailments derived in the same proof.

- We implement a prototype prover, named Songbird, and experiment on it with two entailment benchmarks
from a separation logic competition SL-COMP 2014 as well as a synthetic benchmark. Our experiment shows
a promising result because Songbird can prove most of the entailments in these benchmarks. The prover
Songbird is available online at https://songbird-prover.github.io/mutual-induction/.

Outline. The rest of our paper is organized as follows. We present a motivating example in Sect. 2 and
theoretical background in Sect. 3. Afterward, we describe our main contributions, which include the mutual
induction principle in Sect. 4, the formal proof system in Sect. 5, the implementation of our prototype prover
in Sect. 6, and our experiment on entailment benchmarks in Sect. 7. Finally, we discuss related work in Sect. 8,
limitations in Sect. 9, and conclude in Sect. 10.

https://songbird-prover.github.io/mutual-induction/

Automated mutual induction proof in separation logic 209

Fig. 1. A linked-list traversal algorithm with random jump

Prior publication. This paper is an extended version of our earlier work published in the 21st International
Conference on Formal Methods (FM) in 2016 [Ta+16]. In particular, we extend it with more explanation on
theoretical background and related work in Sects. 3 and 8. We also describe more details on the implementation
of our prover Songbird, by presenting two auxiliary procedures to find inference rules in Sect. 6. We discuss
limitations of the proof system in Sect. 9. Finally, we re-conduct the experiments with not only the benchmark
slrd entl as in the prior publication but also an additional entailment benchmark sll entl from SL-COMP 2014
and an improved version of our proposed benchmark slrd ind [Ta+16]. We present these new experiments in
Sect. 7.

2. Motivating example

We consider the procedure traverse in Fig. 1, which is written in a C-like language to traverse a linked list data
structure whose elements are of type node. More specifically, this procedure visits the linked list’s elements by
randomly jumping either one or two steps at a time. In order to verify the memory safety of this procedure, an
automated verification tool first needs to formulate the shape of the memory manipulated by traverse. Suppose
the initially discovered shape is represented by an inductive heap predicate tmp(x) which is defined as follows:

tmp(x) def� emp ∨ ∃ u.(x �→u ∗ tmp(u)) ∨ ∃ u, v .(x �→u ∗ u �→v ∗ tmp(v))

Intuitively, tmp(x) covers three possible cases of the shape, which can be an empty memory emp (when
x �� NULL), or can be recursively expanded by a single data structure x �→u (when traverse jumps one step),
or can be recursively expanded by two structures x �→u and u �→v (when traverse jumps two steps). In this
definition, x �→u and u �→v are two separation logic predicates modeling the data structure node. We will present
details about these predicates and theoretical background of separation logic in Sect. 3.

Since the derived shape tmp(x) is anomalous, the automated verification tool may want to examine if this
shape is actually a linked list segment, modeled by the following predicate:

ls(x , y) def� (emp ∧ x�y) ∨ ∃w .(x �→w ∗ ls(w , y))

This can be done by checking the validity of the following entailment:

E � tmp(x) |− ∃ y . ls(x , y)

In the semantics of separation logic, the entailmentE is said tobe valid, if allmemorymodels that satisfy tmp(x)
also satisfy ∃ y . ls(x , y). Since this entailment contains the inductive heap predicate tmp(x) in its antecedent, a
natural approach to prove it is to perform mathematical induction on tmp(x). In particular, E is first recorded
as an induction hypothesis (IH), and then the predicate tmp(x) is analyzed in each case of its definition, via a
method called unfolding, to derive the following entailments E1,E2, and E3:

E1 � emp |− ∃ y . ls(x , y)
E2 � x �→u ∗ tmp(u) |− ∃ y . ls(x , y)
E3 � x �→u ∗ u �→v ∗ tmp(v) |− ∃ y . ls(x , y)

210 Q.-T. Ta et al.

Fig. 2. Proof tree of E2, using induction hypothesis E

Fig. 3. Ordinary proof tree of E3, using induction hypothesis E

The entailment E1 can be easily proved by unfolding the predicate ls(x , y) by its first definition case to obtain
a valid entailment emp |− ∃ y .(emp∧ x � y). On the contrary, the entailment E2 can only be proved by using the
induction hypothesis E . Its detailed proof tree is depicted in Fig. 2. We can also prove E3 by the same method,
i.e., by applying the IH E , and its proof tree is shown in Fig. 3.

Using a different strategy, we observe that once E2 is proved, the entailments derived during its proof, i.e., E2
and E4, can be used as hypotheses to prove E3. In this case, the new proof of E3, which is demonstrated in Fig. 4,
is even simpler than its original proof shown in Fig. 3. The proving process with this new strategy, therefore, is
more efficient.

In the new proof tree, the entailment E4 can be directly used as a hypothesis to prove other entailments since
it is already proved valid: its proof tree does not rely on any external hypotheses (Fig. 2). However, when applying
E2 to prove E3 (Fig. 4), it is not straightforward to conclude about E3’s validity, since the E2’s validity is still
unknown. This is because the proof of E2 uses E as a hypothesis (Fig. 2). However, E ’s validity also relies on the
validity of both E2 and E3. Therefore, E , E2 and E3 jointly form amutual induction proof, in which they are used
to prove each other. We will discuss in detail the theoretical principle of this proof technique in Sect. 4.

Fig. 4. New proof tree of E3, using hypotheses E2 and E4

Automated mutual induction proof in separation logic 211

3. The symbolic-heap separation logic fragment

In this work, we focus on proving entailments in the symbolic-heap fragment of separation logic with induc-
tive heap predicates. Each formula in this fragment consists of a heap part symbolically modeling the memory
state of a program, and a pure part capturing Boolean constraints on the program’s variables. This fragment is
actively studied in both academia [BCO04, BCO05, IRS13, Bro+16] and industry [BCI11, Cal+15]. We extend
this symbolic-heap separation logic fragment with user-defined inductive heap predicates and linear arithmetic
constraints to capture more properties of data structures, such as the number of elements, or constraints on these
elements’ values. We denote our logic fragment as SLID, where the subscript ID indicates the support of inductive
heap predicates. Its syntax and semantics are introduced below.

Syntax. Figure 5 presents the syntax of formulas in our logic fragment SLID. We write x to denote either
an integer variable representing a numeric property of data structures or a spatial variable modeling a memory
address. In addition, c represents an integer constant, and e is an integer expression, which is composed of other
expressions by the standard linear arithmetic operators: addition, subtraction, and multiplication by a constant
(+,−, ·). Moreover, nil is a special spatial constant indicating a dangling memory address and a is a spatial
expression representing a memory address in general. We use π to indicate a pure atomic formula which can be an
equality constraint among spatial expressions (�, 	�) or a linear arithmetic constraint among integer expressions
(�, 	�,<,≤,>,≥). These pure atomic formulas compose a pure formula � via application of standard logical
operators (∧,∨,¬,→) and standard logical quantification (∀, ∃) as in first-order logic.

On the other hand, we write σ to denote a spatial atomic formula, which can be either a predicate emp,
a singleton heap predicate x ι�→x1, . . . , xn , or an inductive heap predicate P(x1, . . . , xn). More specifically, emp

models an emptymemory, i.e., an unallocated memory. The singleton heap predicate x ι�→x1, . . . , xn describes an
n-field data structure of sort ι, which is located in the memory pointed to by x , and has x1, . . . , xn as values of its
fields. The sort ι represents a unique type of data structure. This sort notation is omitted when there is only one
considered data type in the context, like the motivating example in Sect. 2. Lastly, the inductive heap predicate
P(x1, . . . , xn) represents a recursive data structure whose properties are captured by the parameters x1, . . . , xn .
We will formally define the inductive heap predicate in Definition 3.1. Moreover, these spatial atomic formulas
constitute spatial formula � via the separating conjunction operator (∗).

Finally, we writeF to represent a symbolic-heap formula, whose components are separated by the conjunction
connective (∧) into two parts: a spatial part represented by � and a pure part indicated by �. One of these two
parts can be omitted if � is emp or � is true. We also allow existential quantification (∃) over both spatial and
integer variables of the symbolic-heap formula F .

Definition 3.1 (Inductive heap predicatesA system of k inductive heap predicates Pi of arity ni , with i � 1, . . . , k ,
is defined as:

{
Pi (x i

1 , . . . , x
i
ni
) def� F i

1 (x
i
1 , . . . , x

i
ni
) ∨ . . . ∨ F i

mi
(x i

1 , . . . , x
i
ni
)
}k

i � 1

where, each formula F i
j (x

i
1 , . . . , x

i
ni
) is called a definition case of Pi (x i

1 , . . . , x
i
ni
), and this relation is denoted by

F i
j (x

i
1 , . . . , x

i
ni
) def⇒Pi (x i

1 , . . . , x
i
ni
). Moreover, F i

j (x
i
1 , . . . , x

i
ni
) is a base case, if it does not contain any predicates

mutually defined with Pi (x i
1 , . . . , x

i
ni
); otherwise, it is an inductive case.

Example 3.1 The two predicates tmp(x) and ls(x , y) in Sect. 2 are two examples of inductive heap predicates.
They are self-recursively defined, i.e., their definitions are only built up from heap predicates of the same symbol,
and not from any other inductive heap predicate symbols.

212 Q.-T. Ta et al.

Fig. 5. Syntax of SLID formulas

Fig. 6. Semantics of SLID formulas

Example 3.2 The two inductive heap predicates ListO(x , y) and ListE(x , y) belowwere introduced byBrotherston
et al. [BDP11] to model segments of linked list data structures which respectively contain even and odd number of
elements. These two predicates are mutually recursively defined since the predicate symbols ListO and ListE both
appear in the recursive definition of each other.

ListO(x , y) def� x �→y ∨ ∃ u.(x �→u ∗ ListE(u, y))
ListE(x , y) def� ∃ u.(x �→u ∗ ListO(u, y))

Semantics. Figure 6 exhibits the semantics of formulas in our separation logic fragment SLID. We write Var
to denote a set of variables, Sort to represent a set of sorts, and Val to indicate a set of values. Moreover, Loc
is a set of memory addresses (Loc ⊂ Val) and Val+ is an n-fold Cartesian product of Val, where n≥1. A model
s, h of an SLID formula consists of: the stack model s , which is a function s : Var → Val, and the heap model h,
which is a partial function h: (Loc × Sort) ⇀ Val+.

We write ���s and �e�s to denote the valuation of a pure formula � and an expression e under the stack
model s . Moreover, dom(h) denotes the domain of h; h # h ′ indicates that h and h ′ have disjoint domains, i.e.,
dom(h)∩ dom(h ′)� ∅; h ◦ h ′ is the union of two disjoint heap models h and h ′; and [f | x : y] is a function like
f except that it returns y for the input x . We follow Reynolds’ semantics to consider the finite heap models, i.e.,
∀ h. | h |< +∞, where | h | is the domain size of h [Rey08].

Entailments.Given the syntax and the semantics of separation logic formulas,we are ready to define separation
logic entailments as follows.

Automated mutual induction proof in separation logic 213

Definition 3.2 (Entailments) An entailment E between two formulas F1 and F2, denoted as E �F1 |−F2, or just
F1 |−F2, is said to be valid, iff for all model s, h if s, h satisfies F1 then it also satisfies F2. Formally:

F1 |− F2 is valid, iff ∀ s, h. (s, h |� F1 → s, h |� F2).

In the above definition, F1,F2 are respectively called the antecedent and the consequent of the entailment.

Definition 3.3 (Model and counter-model of entailments) A separation logic model s, h is called a model of an
entailment F |− G , iff s, h |� F implies s, h |� G . On the contrary, s, h is called a counter-model of F |− G , iff
s, h |� F and s, h 	|� G .

We denote s, h |� (F |− G), or s, h |� E , if s, h is a model of E . Similarly, we write s, h 	|� (F |− G), or
s, h 	|� E , if s, h is a counter-model of E . Given a list of n entailments E1, . . . ,En , we write s, h |� E1, . . . ,En

if s, h is a model of all entailments E1, . . . ,En , and s, h 	|� E1, . . . ,En if s, h is a counter-model of at least one
entailment in E1, . . . ,En .

Substitution. We write [e1/v1, . . . , en/vn] to denote a simultaneous substitution and F [e1/v1, . . . , en/vn] de-
notes a formula that is obtained fromF by simultaneously replacing all occurrences of the free variables v1, . . . , vn
in F by e1, . . . , en , respectively. The simultaneous substitution has the following properties.

Proposition 3.1 (Substitution law for formulas [Rey08]) Consider a formula F , a substitution θ � [e1/v1, . . . ,
en/vn], and a separation logic model s, h. Let s ′ � [s | v1 : �e1�s | . . . | vn : �en�s]. Then,

s, h |� F θ , iff s ′, h |� F

Theorem 3.1 (Substitution law for entailments) Consider an entailment F1 |− F2 and a substitution θ . If F1 |− F2
is valid, then F1θ |− F2θ is also valid.

Proof. Suppose that θ � [e1/v1, . . . , en/vn]. Consider an arbitrary model s, h of F1θ , i.e., s, h |� F1θ . Let
s ′ � [s | v1 : �e1�s | . . . | vn : �en�s]. Then by Proposition 3.1, s, h |� F1θ implies that s ′, h |� F1. In addition,
the theorem’s hypothesis provides that F1 |− F2 is valid, therefore s ′, h |� F2. It is implied by Proposition 3.1
again that s, h |� F2θ . Given the hypothesis that F1 |− F2 is valid, we have shown that if s, h is a model of F1θ ,
then it is also a model of F2θ . Since s, h is chosen arbitrarily, by Definition 3.2, the entailment F1θ |− F2θ is
valid. �

Syntactic equivalence. We also introduce a new concept of syntactic equivalence between two separation logic
formulas. This concept will be used in next sections to develop our formal entailment proof system.

Definition 3.4 (Syntactic equivalence) The syntactical equivalence relation of two spatial formulas �1 and �2,
denoted as �1

∼� �2, is recursively defined as follows:
(1) emp ∼� emp (2) x ι�→x1, . . . ,xn ∼� x ι�→x1, . . . ,xn (3) P(x1, . . . ,xn) ∼� P(x1, . . . ,xn)
(4) (�1

∼� �′
1) ∧ (�2

∼� �′
2) → (�1 ∗ �2

∼� �′
1 ∗ �′

2) ∧ (�1 ∗ �2
∼� �′

2 ∗ �′
1)

4. A mutual induction principle for entailment proof

In this section, we first introduce a general schema of Noetherian induction, a.k.a., well-founded induction, and
apply it to prove separation logic entailments.

Noetherian induction [Bun01]. Given a conjecture P(α), with α is a structure of type τ . The general schema
of Noetherian induction states that for an arbitrary structure α, if P holds for all sub-structure β of α implies
that P also holds for α, then P holds for all structure α.

214 Q.-T. Ta et al.

Formally:

∀ α : τ. (∀β : τ. β ≺τ α → P(β)) → P(α)

∀ α : τ. P(α)

where≺τ is a well-founded relation on τ , i.e., there is no infinite descending chain, like . . . ≺τ αn ≺τ . . . ≺τ α2 ≺τ

α1. Noetherian induction can be applied for arbitrary type τ , such as data structures or control flow. However,
success in proving a conjecture by induction is highly dependent on the choice of the induction variable α and
the well-founded relation ≺τ .

Proving separation logic entailments using Noetherian induction. We observe that in Reynolds’ semantics, the
heap domain of any separation model s, h is finite, i.e., | h |< +∞ [Rey08]. This property inspires us to define a
relation among separation logic models by comparing the size of their heap domains. We call this relation as the
model order, and it is a well-founded relation.

To prove a separation logic entailment by using this model order, we will show that for an arbitrary separation
logic model, if all the smaller models satisfying the entailment implies that the given model also satisfies it, then
the entailment is satisfied by all separation logic models and is valid. We formally describe the model order and
the induction principle as follows.

Definition 4.1 (Model order) The model order is a binary relation between separation logic models. It is denoted
by ≺, and is defined as: s1, h1 ≺ s2, h2, iff | h1 |<| h2 |.
Theorem 4.1 (Well-founded relation) The model order ≺ is a well-founded relation.

Proof. By contradiction, suppose that ≺ were not well-founded, then there would exist an infinite descending
chain: . . .≺ sn , hn ≺ . . .≺ s1, h1. It follows that there would exist an infinite descending chain: . . . <| hn |< . . . <|
h1 |. This is impossible since domain size of heap model is finite, i.e., | h1 |, . . . , | hn |, . . . ∈ N. �

Theorem 4.2 (Induction principle) Consider a separation logic entailment E . For all model s, h, if all smaller
models s ′, h ′ satisfy E implies that s, h also satisfies E , then E is valid. Formally:

∀ s, h. (∀ s ′, h ′. s ′, h ′ ≺ s, h → s ′, h ′ |� E) → s, h |� E

∀ s, h. s, h |� E

Since our induction principle is constructed on the separation logic model order, an induction hypothesis can
beused in theproof of any entailmentwhenever thedecreasing conditiononmodel order is satisfied.This flexibility
allows us to extend the aforementioned principle to support mutual induction, in which multiple entailments can
participate in an induction proof, and each of them can be used as a hypothesis to prove the others. In the
following, we will introduce our mutual induction principle. Note that the induction principle in Theorem 4.2 is
an instance of this principle when only one entailment takes part in the induction proof.

Theorem 4.3 (Mutual induction principle) Given n entailments E1, . . . ,En . For all model s, h, if all smaller
models s ′, h ′ satisfy E1, . . . ,En implies that s, h also satisfies E1, . . . ,En , then all the entailments E1, . . . ,En are
valid. Formally:

∀ s, h. (∀ s ′, h ′. s ′, h ′ ≺ s, h → s ′, h ′ |� E) → s, h |� E1, . . . ,En

∀ s, h. s, h |� E1, . . . ,En

Proof. By contradiction, assume that some of E1, . . . ,En were invalid. Then, there would exist some counter-
models s, h such that s, h 	|� E1, . . . ,En . Since ≺ is a well-founded relation, there would exist the least counter-
model s1, h1 such that s1, h1 	|� E1, . . . ,En , and, s ′

1, h
′
1 |� E1, . . . ,En for all s ′

1, h
′
1 ≺ s1, h1. By this theorem’s

hypothesis ∀ s, h. (∀ s ′, h ′. s ′, h ′ ≺ s, h → s ′, h ′ |� E1, . . . ,En) → s, h |� E1, . . . ,En , the following statement
also holds: (∀ s ′

1, h
′
1. s

′
1, h

′
1 ≺ s1, h1 → s ′

1, h
′
1 |� E1, . . . ,En) → s1, h1 |� E1, . . . ,En . We have shown earlier that

s ′
1, h

′
1 |� E1, . . . ,En for all s ′

1, h
′
1 ≺ s1, h1. Consequently, the statement s1, h1 |� E1, . . . ,En also holds. This

contradicts with the assumption that s1, h1 is a counter-model. �

Automated mutual induction proof in separation logic 215

5. The mutual induction proof system

In this section, we formally describe a proof system, which implements the mutual induction principle to prove
separation logic entailments. The proof system comprises logical rules dealing with the logical structures of
entailments in Sect. 5.1, and induction rules recording and applying induction hypotheses in Sect. 5.2. We also
introduce a general proof search procedure and discuss its soundness in Sects. 5.3 and 5.4.

Each inference rule in our proof system has zero or more premises, one conclusion, and possibly one side
condition. Each of the premises or the conclusion is described in the same form of a tripleH, ρ, F1 |− F2. More
specifically, F1 |− F2 is an entailment. H is a set of entailments serving as hypotheses and their validity statuses,
where each hypothesis is annotated with either the symbol � or the symbol ? indicating that the hypothesis is
currently valid or unknown. These hypotheses are recorded during a proof search and can be used to prove the
entailment F1 |− F2. Lastly, ρ is a proof trace capturing a chronological list of inference rules applied by the proof
search procedure to reach F1 |− F2.

We also call the entailment in each rule’s conclusion as the goal entailment. The rules with empty premise are
called theaxiomrules.Aproof traceρ containingn rulesR1, . . . ,Rn ,withn ≥ 0, is representedby [(R1), . . . , (Rn)],
where the head (R1) of ρ is the latest rule applied by the proof search procedure. We utilize basic operations to
manipulate proof traces, which include proof trace insertion: (R) :: ρ, membership checking: (R) ∈ ρ, and proof
trace concatenation: ρ1 @ ρ2.

5.1. Logical rules

Figure 7 presents logical rules of our proof system to dealwith the logical structure of separation logic entailments.
For brevity, we write �x to indicate a list of variables x1, . . . , xn , and | �x | means the number of variables in �x . We
denote the symbolic-heap formula ∃ �x .(� ∧ �) as F , where the variable list �x can be empty. When F ≡ � ∧ �,
we write F ∗ �′ to denote � ∗ �′ ∧ � and F ∧ �′ to denote � ∧ � ∧ �′. When �u and �v are two variable lists of
the same length, i.e., �u � u1, . . . ,un and �v � v1, . . . ,vn , we write �u��v to indicate (u1�v1)∧ . . . ∧ (un�vn). We
also write �x # �y to denote �x and �y are disjoint, i.e., �u.(u ∈ �x ∧ u ∈ �y). Finally, FV(F) is a set of free variables
appearing in the formula F .

The set of logical rules are explained in detail as follows:

- Axiom rules. The rule |−π proves a pure entailment �1 |− �2 by invoking off-the-shelf provers such as Z3
[MB08] to check the implication�1 → �2 in its side condition. The two rules⊥π

L and⊥σ
L decide an entailment

vacuously valid if its antecedent is unsatisfiable, i.e., the antecedent contains a contradiction (as indicated in
the rule ⊥π

L’s side condition � → false) or separating singleton heap predicates having the same memory
address (u

ι1�→�v ∗ u
ι2�→�w , which violates the separating condition of separation logic).

- Normalization rules. These rules simplify their goal entailments by either removing equalities (�L), eliminating
existentially quantified variables (∃L, ∃R), or the empty heap predicate emp (EL,ER) from antecedents or
consequents of the entailments.

- Matching rules. The two rules∗�→ and∗Pmatch and remove identical spatial atoms from two sides of their goal
entailments. More specifically, the matching condition, i.e., the identical condition, is guaranteed by adding
equality constraints on these spatial atoms’ arguments into the consequents of the derived entailments. These
constraints need to be proved later during the proof derivation.

- Unfolding rule. The rule PR derives new entailments by unfolding a heap predicate in the consequent of a
goal entailment by its inductive definition. The original goal entailment is valid if at least one of the derived
entailments is valid. On the other hand, heap predicates in the entailment’s antecedent will be handled by the
induction rule ID in the next subsection.

216 Q.-T. Ta et al.

Fig. 7. Logical rules; for a rule R with trace ρ in its conclusion, the trace in its premise is ρ′ � (R) :: ρ

Fig. 8. Induction rules

5.2. Induction rules

Figure 8 presents two induction rules ID and IH, which are the main rules implementing our mutual induction
principle. We will carefully explain them below.

The rule ID records its goal entailment as an induction hypothesisH , and unfolds an inductive heap predicate
in the antecedent of H to derive new entailments. When H is inserted into the hypothesis vault H, its status is
initially assigned to ? (unknown), indicating that its validity is not known at the moment. Later, the status of H
will be updated to � (valid) once the proof search procedure is able to prove it valid. Generally, an entailment E
can be concluded valid if the proof search procedure is able to derive a proof tree T , where (i) every leaf of T is
empty via applications of axiom rules, and (ii) all hypotheses used by the rule IH must be derived within T .

The rule IH applies an appropriate hypothesisH � �3 ∧�3 |− F4 to prove its goal entailmentE � �1 ∧�1 |−
F2. It firstly matches1 the antecedents of H and E by a substitution θ , i.e., there exists a spatial formula �′
such that �1

∼� �3θ ∗ �′ and �1 → �3θ . If such θ and �′ exist, we can weaken the antecedent of E as follows
(�1 ∧ �1) |− (�3θ ∗ �′ ∧ �3θ ∧ �1) |− (F4θ ∗ �′ ∧ �1). Here, we apply the substitution law for entailments
(Theorem 3.1) to obtain the entailment �3θ ∧ �3θ |− F4θ from the hypothesis H . The proof system then derives
a new sub-goal entailment F4θ ∗ �′ ∧ �1 |− F2 as shown in the premise of the rule IH. Details of this proof
derivation can be referred to in the soundness proof of the rule IH in Sect. 5.4.

1 In an earlier work [Ta+16] of this paper, we used the term “unify” to describe the induction hypothesis application. However, the use of
“unify” in this context is imprecise, and the more suitable term is “match”, since matching is a special version of unification, which allows
substitution on only the first of each pair of formulas or terms [KN87, Har09]. Note that thismatching is unrelated to thematching inference
rules which are commonly used in separation logic literature.

Automated mutual induction proof in separation logic 217

Fig. 9. Applying hypothesis

The side condition †(IH) of the rule IH ensures the decreasing condition of our mutual induction principle. In
particular, suppose that the proof search procedure applies a hypothesis H in H to prove an entailment E by
using the rule IH. If the status of H is �, which is denoted by the first condition in †(IH), then H is already proved
to be valid; thus it can be surely used to prove other entailments. Otherwise, the status of H is ?, and H may
participate in a mutual induction proof with an entailment I in the proof path of E . We illustrate this induction
hypothesis application in Fig. 9, where the entailment I has been recorded earlier as an induction hypothesis by
an application of the rule ID.

In the latter case, our mutual induction principle requires the decrease of the model size when applying the
hypothesis H to prove the entailment I . We will show that this decreasing condition holds if at least one of the
last two conditions of †(IH) is satisfied. For the convenience of presentation, we first restate these two conditions
of †(IH) as follows:

(i) ∃ ι, u, �v , �′′.(�′ ∼� u ι�→�v ∗�′′), which indicates that the left-over heap part�′ after matching the antecedent
of H into that of E contains at least one singleton heap predicate, or

(ii) ∃ ρ1, ρ2.(ρ � ρ1@[(∗�→)]@ρ2 ∧ (ID) 	∈ ρ1 ∧ (ID)∈ ρ2), which requires that there is a removal step of a
singleton heap predicate, which is applied by the rule ∗�→ in a proof path from the most recent induction
step ID to the current hypothesis application IH.

Now, to prove the decreasing condition when applying the hypothesis H to prove the entailment I , we will
consider an arbitrary model s, h of I . During the derivation path from I to E , the model s, h is transformed into
a corresponding model se , he of E . We always have | he |≤| h | since applications of all inference rules never
increase heap model size of corresponding entailments. Moreover, when applying H to prove E , the model s ′, h ′
of H , which corresponds to se , he of E , satisfies | h ′ |≤| he |, due to the matching step in rule IH. We consider
two following cases. If the condition (i) is satisfied, then the size of heap model of the left-over part �′ is at least
1 since �′ contains a singleton heap predicate. As a result, | h ′ |<| he | and it follows that | h ′ |<| h |. If the
condition (ii) is satisfied, then | he |<| h | since there is a singleton heap predicate, whose heap model size is 1, is
removed when deriving I to E . This implies that | h ′ |<| h |. In summary, we obtain that | h ′ |<| h | for both the
two cases; thus, s ′, h ′ ≺ s, h. This concludes our explanation about the rule IH.

5.3. A general proof search procedure

Figure 10 presents our proof search procedure Prove, which is designed in a self-recursive manner. Its inputs
consist of a set of hypotheses H, a proof trace ρ, and an entailment F |− G . These inputs correspond to the
components of the conclusions of all inference rules. When Prove is invoked for the first time to prove a goal
entailment, the induction hypothesis setH and the proof trace ρ are initially assigned to empty (∅ and []). Their
values will be accumulated later during the proof derivation.

Generally, to prove the input entailment F |− G , the procedure Prove firstly discovers among all inference
rules presented in Figs. 7 and 8, a set of suitable rules R whose conclusions can be unified with the entailment
F |− G . This inference rule discovery is done by invoking an auxiliary procedure FindRules at line 1. If no suitable
rule is found, the proof search procedure immediately returns UNKN, indicating that it is unable to prove the
entailment (line 2).

218 Q.-T. Ta et al.

Fig. 10. The mutual induction proof search procedure

Otherwise, it subsequently processes each discovered rule R in R and either (i) returns VALID to announce a
valid result, if an axiom rule is selected (line 4), or (ii) recursively searches for proofs of new sub-goal entailments
derived in the premises of R (lines 9–16). In the latter case, the procedure switches to apply the next discovered
rule if one of the currently derived sub-goal entailments is not proved (line 13), or returns VALID if all of them are
proved by the current rule R (line 16). Finally, it simply returns UNKN when it cannot prove the goal entailment
with all selected rules R (line 17).

The procedure Prove uses a local variable Hused to store all hypotheses used during the proof search. Hused
is updated when the rule IH is applied (line 8) or after the procedure finishes proving a derived entailment (lines
10 and 12). Prove also uses another variable Hdrvd to capture all entailments derived during the proof search
and their validity statuses. The condition at line 14 checks if all hypotheses used to prove the entailment F |− G
are only introduced during the entailment’s proof. If this condition is satisfied, then F |− G is updated with a
valid status � (line 14). Otherwise, the entailment may participate in a mutual induction proof, thus its status is
assigned to unknown ? (line 15).

At line 10, the procedure Prove uses not only the hypothesis setHi , introduced by the selected inference rule,
but also the set Hdrvd containing entailments derived during the proof search to prove a new goal entailment
Fi |− Gi . This hypothesis application reflects our mutual induction principle which allows a goal entailment
and other derived entailments to be used as hypotheses to prove each other. Lastly, we use the union and update
operator ⊕ in the algorithm to insert new entailments and their statuses into a set of hypotheses or to update
existing entailments with their new statuses.

Automated mutual induction proof in separation logic 219

5.4. Soundness and completeness

Our mutual induction proof system is sound but incomplete. If it can prove an entailment, then the entailment
is semantically valid. Otherwise, it cannot conclude about the validity of the entailment. The proof system’s
soundness is formally stated in the following Theorem 5.1. Moreover, the incompleteness of our proof system
is an unavoidable drawback of any proof system for logic fragments containing inductive predicates and linear
arithmetic. In essence, these logic fragments can represent any constraints in Peano arithmetic, e.g., addition
and multiplication. According to Gödel’s second incompleteness theorem [God92], every consistent axiomatic
system which includes Peano arithmetic cannot prove its own consistency. Consequently, there does not exist
any proof system which can either prove or disprove an arbitrary entailment. We will discuss more about this
incompleteness when explaining the limitation of our proof system in Sect. 9.

Theorem 5.1 (Soundness)Given an entailmentE , if the proof search procedureProve returns VALIDwhenproving
E using an empty set of hypotheses (H � ∅), then E is semantically valid.

Proof. We first prove that all the inference rules utilized by our proof system (Figs. 7 and 8) are sound. More
specifically, we will show that if the entailments in the premises of these rules are valid, and their side conditions
hold, then the goal entailments in their conclusions are also valid. After that, we will argue that when the proof
search procedure (Fig. 10) applies these inference rules to prove an entailment, the corresponding proof tree
reflects accurately the mutual induction principle. The details are as follows. �

The soundness of the inference rules:
- Axiom rules ⊥π

L,⊥σ
L and |−π :

⊥π
L �→ false

H, ρ, F1 ∧� |−F2

⊥σ
L

H, ρ, F1 ∗ u ι1�→�v ∗ u ι2�→�w |−F2

|−π �1 → �2H, ρ, �1 |− �2

For the two rules ⊥π
L,⊥σ

L, the antecedents of their goal entailments are equivalent to false since they either
contain a contradiction (� → false in the rule ⊥π

L) or contain two singleton heaps having the same memory
address (u

ι1�→�v ∗ u
ι2�→�w in the rule ⊥σ

L). Therefore, these entailments are valid.
For the rule |−π , since its side condition �1 → �2 holds, it’s evident that the goal entailment �1 |− �2 is valid.

- Rules �L, ∃L and ∃R:
H, ρ ′, F1[u/v] |− F2[u/v]�L H, ρ, F1 ∧ u�v |− F2

H, ρ ′, F1[u/x] |−F2∃L u 	∈ FV(F2)H, ρ, ∃ x .F1 |−F2

H, ρ ′, F1 |− ∃ �x .F2[u/v]∃R H, ρ, F1 |− ∃ �x , v .(F2 ∧ u�v)

For the rule�L, consider an arbitrary model s, h such that s, h |� F1 ∧u�v . It follows that s(u)� s(v), therefore
s, h |� F1[u/v]. Since the entailment F1[u/v] |− F2[u/v] in this rule’s premise is valid, s, h |� F2[u/v]. Recall
that s(u)� s(v), hence s, h |� F2. Since s, h is chosen arbitrarily, the entailment F1 ∧ u�v |− F2 in this rule’s
conclusion is valid.

For the rule ∃L, consider an arbitrary model s, h such that s, h |� ∃ x .F1. Then the stack model s can be
extended with an integer value i ∈ Int of x to obtain a new model s ′, i.e., s ′ � [s | x : i], such that s ′, h |� F1.
Let s ′′ be a stack model such that s ′′ � [s | u : i]. Then, s ′(x)� s ′′(u) (both are equal to i) and it follows from
s ′, h |� F1 that s ′′, h |� F1[u/x]. Since the entailment F1[u/x] |− F2 in this rule’s premise is valid, s ′′, h |� F2,
or [s | u : i] |� F2. It follows from this rule’s side condition u 	∈ FV(F2) that s, h |� F2. Since s, h is chosen
arbitrarily, the goal entailment ∃ x .F1 |− F2 in this rule’s conclusion is valid.

For the rule ∃R, consider an arbitrary model s, h such that s, h |� F1. Since the entailment F1 |− ∃ �x .F2[u/v]
in this rule’s premise is valid, s, h |� ∃ �x .F2[u/v]. It follows that s, h |� ∃ �x , v .(F2 ∧ u�v), because we can
always choose s(u) as the value of the existential variable v . Since s, h is chosen arbitrarily, the entailment
F1 |− ∃ �x , v .(F2 ∧ u�v) in this rule’s conclusion is valid.

220 Q.-T. Ta et al.

- Rules EL and ER:

H, ρ ′, F1 |− F2
EL H, ρ, F1 ∗ emp |− F2

H, ρ ′, F1 |− ∃ �x .F2
ER H, ρ, F1 |− ∃ �x .(F2 ∗ emp)

It is evident that the two formulas F1 ∗ emp and F1 in the rule EL are semantically equivalent. In addition,
F2 ∗ emp and F2 in the rule ER are also semantically equivalent. Therefore, if the entailments F1 |− F2 and
F1 |− ∃ �x .F2 in these rules’ premises are valid, so are the goal entailments F1 ∗ emp |− F2 and F1 |− ∃ �x .(F2 ∗ emp)
in these rules’ conclusions.
- Rules ∗�→ and ∗P:

H, ρ ′, F1 |− ∃ �x .(F2 ∧ u�t ∧ �v��w)∗�→ u 	∈ �x , �v # �x
H, ρ, F1 ∗ u ι�→�v |− ∃ �x .(F2 ∗ t ι�→�w)

H, ρ ′, F1 |− ∃ �x .(F2 ∧ �u��v)∗P �u # �x
H, ρ, F1 ∗ P(�u) |− ∃ �x .(F2 ∗ P(�v))

For the rule∗�→, consider an arbitrarymodel s, h such that s, h |� F1∗u ι�→�v . Then, there exist twoheapmodels h1
andh2 such thath � h1 ◦ h2, and s, h1 |� F1, and s, h2 |� u ι�→�v . Since the entailmentF1 |− ∃ �x .(F2 ∧ u � t ∧ �v � �w)
in the premise of this rule is valid, s, h1 |� ∃ �x .(F2 ∧ u�t ∧ �v��w). Then, s can be extended with some integer
values of �x to obtain a new stack model s ′ such that s ′, h1 |� F2 ∧ u�t ∧ �v��w . Besides, the side condition of
this rule gives u 	∈ �x and �v # �x . Recall that s ′ is extend from s with values of �x , and s, h2 |� u ι�→�v , therefore
s ′, h2 |� u ι�→�v . We have shown that s ′, h1 |� F2 ∧ u�t ∧ �v��w , and s, h2 |� u ι�→�v , and h � h1 ◦ h2. It follows that
s ′, h |� F2 ∗ u ι�→�v ∧ u�t ∧ �v��w . Hence, s ′, h |� F2 ∗ u ι�→�v , and s ′(u)� s ′(t), and s ′(�v)� s ′(�w). Consequently,
s ′, h |� F2 ∗ t ι�→�w . Since s ′ is extended from s with values of �x , it follows from the semantics of existential
quantification that s, h |� ∃ �x .(F2∗t ι�→�w). Recall that s, h is chosen arbitrarily, hence the entailmentF1∗u ι�→�v |−
∃ �x .(F2 ∗ t ι�→�w) in this rule’s conclusion is valid.

The soundness of the rule ∗P can be proved similarly.
- Rule PR:

H, ρ ′, F1 |− ∃ �x .(F2 ∗ FP
i (�u))

PR FP
i (�u)def⇒P(�u)

H, ρ, F1 |− ∃ �x .(F2 ∗ P(�u))
Consider an arbitrary model s, h such that s, h |� F1. Since the entailment F1 |− ∃ �x .(F2 ∗ FP

i (�u)) in the
rule’s premise is valid, it follows that s, h |� ∃ �x .(F2 ∗ FP

i (�u)). In addition, the rule’s side condition FP
i (�u)def⇒P(�u)

indicates that FP
i (�u) is a definition case of P(�u). Therefore, s, h |� ∃ �x .(F2 ∗P(�u)). Since s, h is chosen arbitrarily,

it follows that the entailment F1 |− ∃ �x .(F2 ∗ P(�u)) in this rule’s conclusion is valid.
- Rule ID:

H ∪ {(H , ?)}, (ID) :: ρ, F1 ∗ FP
1 (�u) |− F2 . . . H ∪ {(H , ?)}, (ID) :: ρ, F1 ∗ FP

m (�u) |− F2
ID †(ID)H, ρ, F1 ∗ P(�u) |− F2

with H � F1 ∗ P(�u) |− F2, and †(ID): P(�u)def�FP
1 (�u) ∨ . . . ∨ FP

m (�u)

Consider an arbitrary model s, h such that s, h |� F1 ∗ P(�u). According to the side condition P(�u)def�FP
1 (�u)∨

. . . ∨ FP
m (�u) of this rule, FP

1 (�u), . . . , FP
m (�u) are all definition cases of P(�u). Since s, h |� F1 ∗ P(�u), it follows that

s, h |� F1 ∗ FP
i (�u), for all i � 1 . . .m. On the other hand, F1 ∗ FP

1 (�u), . . . , F1 ∗ FP
m (�u) are the antecedents of all

the entailments F1 ∗ FP
1 (�u) |− F2, . . . , F1 ∗ FP

m (�u) |− F2 in this rule’s premises. These entailments are valid and
have the same consequent F2. Therefore, s, h |� F2. Since s, h is chosen arbitrarily, it follows that the entailment
in the rule’s conclusion is valid.

Automated mutual induction proof in separation logic 221

- Rule IH:

H ∪ {(H , status)}, (IH) :: ρ, F4θ ∗�′ ∧�1 |− F2
IH ∃ θ,�′.(�1∼��3θ∗�′ ∧ �1→�3θ); †(IH)

H∪ {(H ��3∧�3|−F4, status)}, ρ, �1 ∧�1 |−F2

with †(IH): (status � �) ∨ ∃ ι, u, �v , �′′.(�′ ∼� u ι�→�v ∗ �′′)
∨ ∃ ρ1, ρ2.(ρ � ρ1@[(∗�→)]@ρ2 ∧ (ID) 	∈ ρ1 ∧ (ID)∈ ρ2).

On one hand, the side conditions �1
∼� �3θ ∗ �′ and �1 → �3θ of this rule imply that the entailment

�1 ∧ �1 |− �3θ ∗ �′ ∧ �3θ ∧ �1 is valid. On the other hand, by applying the entailment substitution law
(Theorem 3.1), the hypothesis H � �3 ∧ �3 |− F4 implies that the entailment �3θ ∧ �3θ |− F4θ is valid. It
follows that the entailment �3θ ∗ �′ ∧ �3θ ∧ �1 |− F4θ ∗ �′ ∧ �1 is also valid. We have shown that the two
entailments �1 ∧ �1 |− �3θ ∗ �′ ∧ �3θ ∧ �1 and �3θ ∗ �′ ∧ �3θ ∧ �1 |− F4θ ∗ �′ ∧ �1 are valid. In addition,
this rule’s premise gives that F4θ ∗�′ ∧ �1 |− F2 is valid. It follows that the entailment �1 ∧�1 |−F2 in the rule’s
conclusion is also valid.

Note that in the above argument, we only prove the local soundness of the rule IH. This proof does not require
the side conditions about the status of the applied hypothesis (status � �) and the removal of singleton heap
predicates (∃ ι, u, �v , �′′.(�′ ∼� u ι�→�v ∗�′′) and ∃ ρ1, ρ2.(ρ � ρ1@[(∗�→)]@ρ2 ∧ (ID) 	∈ ρ1 ∧ (ID)∈ ρ2)). Instead,
these side conditions will be used to prove the soundness of the entire proof system in the following section.

The soundness of the proof search procedure:
Suppose that when proving an entailment E , the proof search procedure derives a proof tree T of E . There

will be two cases as follows. If the rule IH (induction hypothesis application) is not used in T , then induction proof
is not used in the proof of E . Since all inference rules are proven to be sound and the proof of E does not require
any induction hypotheses, it is clear that the entailment E is valid. If the rule IH is used in T , then the statuses of
the applied hypotheses, at the moment they are used, can be either valid (�) or unknown (?). If the statuses of all
the applied hypotheses in the proof tree T are valid (�), then it is clear that E is valid, due to the soundness of
our inference rules. If there exist some applied hypotheses whose statuses are unknown (?), then these hypotheses
may participate in a mutual induction proof. We will show that the entailment E is also valid.

Recall that the hypotheses applied by the rule IH are either (i) induction hypotheses recorded by the rule ID,
or (ii) hypotheses derived by other rules during proof search. Therefore, in the proof tree T , both the induction
hypotheses and other hypotheses can participate in a mutual induction proof. We will transform the proof tree
T into a new tree T ′ in which the mutual induction proof involves only the induction hypotheses recorded by
the rule ID. This can be done by modifying the rule IH to put the used hypotheses, which are not recorded by
the rule ID, into premises of the rule. In particular, suppose the (simplified) rule IH which applies a hypothesis
�3 ∧ �3 |− F4 (not recorded by the rule ID) into proving a goal entailment �1 ∧ �1 |− F2 as follow:

F4θ ∗ �′ ∧ �1 |− F2
IH

apply hypothesis: �3 ∧ �3 |− F4 (which is not recorded by rule ID)
∃ θ,�′.(�1 ≡ �3θ ∗�′ ∧ �1 → �3θ)�1 ∧ �1 |− F2

We modify the rule IH so that the hypothesis �3 ∧ �3 |− F4 appears in the premises as follows:

�3 ∧ �3 |− F4 F4θ ∗ �′ ∧ �1 |− F2
modified IH

�3 ∧ �3 |− F4 is not recorded by rule ID
∃ θ,�′.(�1 ≡ �3θ ∗�′ ∧ �1 → �3θ)�1 ∧ �1 |− F2

By modifying the rule IH, we can transform the proof tree T into a new proof tree T ′ (Fig. 11) where every
node of T which applies a hypothesis (not recorded by the rule ID) to prove an entailment is replaced by a new
node in T ′ that contains not only the target entailment but also full proof tree of the applied hypothesis. Since
this transformation is performed only on hypotheses not recorded by the rule ID, it follows that in the new proof
tree T ′, only induction hypotheses recorded by the rule ID participate in the mutual induction proof.

222 Q.-T. Ta et al.

Fig. 11. Original proof tree T (left tree), and the transformed proof tree T ′ (right tree)

We have shown earlier that all inference rules are proven to be sound. Now, we will show that the new proof
tree T ′ reflects correctly themutual induction principle (Theorem 4.3). LetE1, . . . ,En be all induction hypotheses
recorded by the rule ID and utilized by the rule IH in the new proof tree T ′. Consider an arbitrary separation
logic model s, h, for each entailment Ei , with 1≤ i ≤n, we will show that: (∀ s ′, h ′.s ′, h ′ ≺ s, h → s ′, h ′ |�
E1, . . . ,En) → s, h |� Ei .

Indeed, letEi beFi |− Gi .We consider two cases as follows. If s, h 	|� Fi , then it is clear that s, h |� (Fi |− Gi),
by Definition 3.2. Therefore, s, h |� Ei .

If s, h |� Fi , let (E ′
1 � F ′

1 |− G ′
1), . . . , (E

′
m � F ′

m
|− G ′

m) be all the entailments in the proof tree of Ei ,
in which the rule IH are applied. Since all inference rules in our proof system do not add new heap predicates
when (backward) deriving entailments from their conclusions to their premises, then the model s, h of Fi will
be transformed into the models (s ′

1, h
′
1), . . . , (s

′
m , h ′

m) of the antecedents F ′
1, . . . ,F

′
m , such that | h ′

j | ≤ | h |,
with j � 1, . . . ,m. When the rule IH applies the induction hypothesis Ea in E1, . . . ,En (1≤ a ≤n) to prove the
entailment E ′

b in E ′
1, . . . ,E

′
m (1≤ b ≤m), the model (s ′′

a , h ′′
a) of Ea , which corresponds to s ′

b, h
′
b of E ′

b , satisfies| h ′′
a | ≤ | h ′

b |, due to the side condition �1
∼� �3θ ∗ �′ in the matching step of the rule IH. If there is a singleton

heap which is leftover in this matching step (the side condition ∃ ι, u, �v , �′′.(�′ ∼� u ι�→�v ∗�′′)), then the size of
the leftover heap is at least 1. Therefore, | h ′′

a |<| h ′
b |. Since | h ′

j | ≤ | h |, for j � 1, . . . ,m, and 1≤ b ≤m then
| h ′

b | ≤ | h |. It follows that | h ′′
a |<| h |. If there is a removal step of a singleton heap predicate in the proof

derivation from Ei to E ′
b (the side condition ∃ ρ1, ρ2.(ρ � ρ1@[(∗�→)]@ρ2 ∧ (ID) 	∈ ρ1 ∧ (ID)∈ ρ2)), then the size

of this removed heap predicate is 1. Therefore, | h ′
b |<| h |. Since | h ′′

a | ≤ | h ′
b |, it follows that | h ′′

a |<| h |. In
summary of both these two cases, the side conditions of the rule IH guarantee that when applying the induction
hypothesisEa to prove the derived entailmentE ′

b ofEi , themodel s ′′
a , h ′′

a ofEa , which corresponds to s, h, satisfies
that | h ′′

a |<| h |. Therefore, whenever an induction hypothesis E ′ in E1, . . . ,En is applied to prove a derived
entailment of Ei , the model s ′, h ′ of that induction hypothesis, which corresponds to s, h, always satisfies that
| h ′ |<| h |. Since the rule IH has been proven to be sound earlier and all leaves in the proof tree of Ei are empty
(derived by axiom rules), this result also implies that the statement (∀ s ′, h ′.s ′, h ′ ≺s, h → s ′, h ′ |� E1, . . . ,En) →
s, h |� Ei holds.

Our above argument is also true for all entailment E1, . . . ,En . Hence, the following statement also holds:
(∀ s ′, h ′.s ′, h ′ ≺ s, h → s ′, h ′ |� E1, . . . ,En) → s, h |� E1, . . . ,En . Since this statement is also the premise of our
mutual induction principle (Theorem 4.3), it follows from this principle that all the entailments E1, . . . ,En are
valid. Now, we consider two cases regarding the original entailment E . If E is one of the induction hypotheses
E1, . . . ,En , then E is clearly valid. If E is not one of them, since all inference rules are sound and all the utilized
induction hypotheses E1, . . . ,En in the proof tree T ′ are valid, then E is evidently valid.

Automated mutual induction proof in separation logic 223

6. Implementation

We have implemented the mutual induction proof system in a prototype prover named Songbird, using the
OCaml programming language. In this section, we will focus on discussing the heuristics we apply to make the
proof search in Songbird more efficient. These details have not been addressed in the description of the general
proof search procedure Prove in the previous section. Our prover Songbird is available online for download at:
https://songbird-prover.github.io/mutual-induction/.

We recall that for a given goal entailment, the procedure Prove first finds all applicable inference rules whose
conclusions can unify with the goal entailment. Thereafter, it sequentially applies each of the discovered rules
until either one of them succeeds to prove the entailment (Prove returns VALID), or all of them fail (Prove returns
UNKN). In our actual implementation, we aim to minimize the effort spent on these tasks. Firstly, we design a
heuristic to determine only the necessary inference rules, but not all the possible rules. Secondly, we sort all
discovered inference rules by their priorities, i.e., the chance of successfully proving the goal entailment when
applying these rules, so that the proof search procedure can selectively apply the rules with higher priorities first.
We will elaborate these two details as follows.

Tominimize the effort spent on finding inference rules, we first rank all the inference rules by their importance
to decide which one should be explored first.We observe that the axiom rules (|−π ,⊥π

L or⊥σ
L) are the most impor-

tant rules, since they do not introduce any new entailments and directly conclude about their goal entailments’
validity. Therefore, once the proof search procedure is able to find an axiom rule, it can immediately apply the rule
without the need to search for other rules. These rules, thus, will always be explored first by our proof system. The
normalization rules (�L, ∃L, ∃R,EL or ER) are the next important rules since they remove surplus constraints
from their goal entailments and make them more concise and uniform. This normalization enables the proof
search procedure to explore other future inference rules more easily. Therefore, if the proof search procedure is
able to find a normalization rule, it also needs to apply this rule early.

We rank the remaining rules (∗�→, ∗P,PR, ID, and IH) as the last important rules since they all change the
heap structures of their goal entailments. In general, we consider these rules to be equally important. Hence, for
a given entailment, if the proof search procedure Prove is not able to utilize any axiom rule or normalization rule,
it will find all possible instances of the rules ∗�→, ∗P,PR, ID, and IH. Then, depending on the effect that each of
the discovered rules produces to the goal entailment, we rank them against the others. We consider the following
typical scenarios:

– If Prove discovers an instance of the rule ∗�→ which can remove two singleton heap predicates x �→�y and
x �→�z , each from the two sides of the entailment, then this rule is the most important in comparison with
other discovered rules. This is because the two singleton heaps have the same memory address x , and are
likely to be identical.

– If Prove identifies an instance of the rule ∗P from two inductive heap predicates P(�x1, y, �z1) and P(�x2, y, �z2),
where | �x1 |�| �x2 | and | �z1 |�| �z2 |, then this rule is the second most important since these two predicates
have the same argument y at the same position, hence, they can be identical to be removed.

– If Prove finds an instance of the rules PR, ID or IH which can be applied to produce singleton heap predicates
having the same memory address or inductive heap predicates having at least one similar argument, then this
rule is also important since it may introduce potentially identical heap predicates, so that the two rules ∗�→
or ∗P can be applied in the future.

The above observations lead us to design the FindRules procedure to discover applicable inference rules for a
given goal entailment. This procedure FindRules is invoked by the proof search procedure Prove, as discussed in
Sect. 5.3. In Fig. 12, we provide the pseudocode of FindRules, which implements the aforementioned heuristics.
Given an input entailment F |− G , this procedure sequentially checks if an axiom rule or a normalization rule
can be applied for the goal entailment, via the invocation of an auxiliary procedure CanUnifyRule (lines 18–19).
If such rule exists, it immediately returns the unified instance of that rule, via the application of another auxiliary
procedure CreateRuleInstance (lines 20–21). If FindRules is not able to discover any axiom or normalization rules,
it will find all other applicable inference rules among the remaining rules (lines 22–26). These discovered rules
will be accumulated into an ordered set R as shown in line 26.

https://songbird-prover.github.io/mutual-induction/

224 Q.-T. Ta et al.

Fig. 12. The rule finding procedure

Fig. 13. The rule comparing procedure

Thereafter, the procedure FindRules sorts all inference rules in R in an ascending order of their importance
(line 27). It utilizes a pair-wise comparison procedure CompareRule to assist in this reordering. The proce-
dure CompareRule is presented in Fig. 13, where its two inputs R1 and R2 are instances of the inference rules
∗�→, ∗P,PR, ID, and IH. Its output is one of the three values High, Low, and Equal, indicating that the rule R1 is
respectively more, less, or equally important in comparison to R2. We implement the heuristics discussed earlier
to decide the importance of a rule. In particular, there are three corresponding cases:

– If either R1 or R2 is an instance of the two rules ∗�→ or ∗P and they match two potentially identical singleton
heap predicates of the same memory address or inductive heap predicates having at least one similar argu-
ment, which is checked by the procedureMatchPotentiallyIdenticalPred, then the corresponding rule is more
important than the other (lines 30, 31, 34).

Automated mutual induction proof in separation logic 225

– If either R1 or R2 is an instance of the rules PR, ID, or IH and they can produce two potentially identical heap
predicates, which is checked by the procedure ProducePotentiallyIdenticalPred, then the corresponding is also
more important than the other (lines 32, 35, 36).

– If none of the above conditions satisfy, then CompareRule is unable to decide the priority between the two
rules R1 and R2. In this case, the procedure CompareRule simply returns Equal to indicate that these two rules
are equally important (line 37).

7. Experimental result

In the previous sections, we have discussed about the mutual induction proof system and the prototype prover
Songbird. To evaluate the effectiveness of our prover, we experiment it on two entailment benchmarks from the
separation logic literature as well as a synthetic benchmark.We also compare the experimental result of Songbird
with the results of other state-of-the-art separation logic provers. Our evaluation was performed on an Ubuntu
14.04 LTSmachine with CPU Intel R© E5-2620 (2.4GHz) and 64GBRAM.Details of the experiment are available
online at: https://songbird-prover.github.io/mutual-induction/.

The first experiment was conducted on two entailment benchmarks sll entl and slrd entl from a separation
logic competition named SL-COMP in 2014 [SC16]. We consider only valid entailments from these two bench-
marks since our prover Songbird cannot disprove an entailment, i.e., it cannot conclude if the entailment is
invalid. We compare the performance of Songbird with other participating provers of the SL-COMP 2014. They
include Slide [IRV14], Sleek [Chi+12], Spen [Ene+14], and Cyclist [BDP11, BGP12]. However, we are unable
to make a direct comparison with the induction-based proof technique presented in [CJT15] as their prover was
not available by the time we conducted the experiment.

Entailments in the benchmark sll entl relate only singly linked lists and they are categorized into three
groups: bolognesa, clones, and smallfoot, which are named after their original benchmarks. On the other hand,
entailments in the benchmark slrd entl contain inductive heap predicates modeling more diverse data structures.
We categorize this benchmarks based on their predicate types, such as singly linked lists (singly-ll), doubly linked
lists (doubly-ll), nested lists (nested-ll), skip lists (skip-list), and trees (tree). In Table 1, we report the number
of entailments successfully proved by a prover in each category, with a timeout of 120 seconds for proving an
entailment, as well as the total and average time spent by each prover to prove these entailments. To ensure a fair
comparison, we calculate only the running time that each prover spends on entailments that it can successfully
prove. We do not take account of the time spent on unsuccessful entailments since a prover possibly passes a
timeout of 120 seconds when it fails to prove an entailment.

In each category, the total number of entailments is shown in the column #ent, and the best results among the
examined provers are highlighted in bold. Table 1 shows that Songbird can prove more entailments than all the
other tools. Particularly, Songbird can prove 308/323 entailments (95.4%) with an average running time of 0.68
seconds per each proved entailment. The second best prover Cyclist can prove only 242/323 entailments (74.9%),
which is less than Songbird 66/323 entailments (20.4%). In fact, the difference between this experimental result
of Cyclist and Songbirdmostly arises in the category bolognesa related to the singly linked list predicate. More
specifically, entailments in this category often contain many heap predicates: they contain from 15 to 33 heap
predicates, in comparison with the average of 3 to 6 predicates in the entailments of the other categories. This
large number of heap predicates often requires significant efforts of an induction-based prover (like Songbird) to
syntactically match the antecedent of an induction hypothesis with that of a goal entailment, or of a cyclic-based
prover (like Cyclist) to discover downlink among derived entailments. To cope with this difficulty, our prover
Songbird aims to apply the unfolding rules and thematching rules as soon as possible to removepotential identical
heap predicates from two sides of an entailment, as described earlier in Sect. 6. Certainly, this strategy helps to
reduce the size of the complex entailments in the category bolognesa, which makes the induction hypothesis
matching step more efficient.

https://songbird-prover.github.io/mutual-induction/

226 Q.-T. Ta et al.

Table 1. Evaluation on the SL-COMP benchmarks, where participants are Slide (Sld), Sleek (Slk), Spen (Spn),Cyclist (Ccl) and our prover
Songbird (Sbd)

Benchmark Proved entailments Total proving time (s) Average time (s)
Category #ent Sld Slk Spn Ccl Sbd Sld Slk Spn Ccl Sbd Sld Slk Spn Ccl Sbd

sll entl bolognesa 57 0 0 57 0 57 – – 17.4 – 140.3 – – 0.31 – 2.46
clones 60 0 60 60 60 60 – 1.7 2.2 0.2 3.9 – 0.03 0.04 0.00 0.07
smallfoot 55 0 51 55 55 55 – 1.5 1.6 6.8 3.5 – 0.03 0.03 0.12 0.06

slrd entl singly-ll 64 11 48 3 63 63 0.3 2.0 0.1 1.0 1.8 0.03 0.04 0.03 0.02 0.03
doubly-ll 37 13 18 9 29 25 20.7 1.2 0.3 68.5 0.8 1.59 0.06 0.03 2.36 0.03
nested-ll 11 0 5 11 7 11 – 0.8 0.3 9.3 0.4 – 0.16 0.03 1.33 0.04
skip-list 13 0 4 13 5 13 – 0.4 0.9 0.2 1.2 – 0.09 0.07 0.04 0.09
tree 26 13 14 0 23 24 60.5 0.9 – 12.9 56.5 4.66 0.07 – 0.56 2.35
Total 323 37 200 189 242 308 81.5 8.5 22.8 99.0 208.6 2.20 0.04 0.11 0.41 0.68

Table 2. Pair-wise comparison between Songbird and other provers on the SL-COMP benchmarks

Songbird ✓sb ✗o ✗sb ✓o ✓sb ✓o ✗sb ✗o

Cyclist 71 5 237 10
Spen 104 4 204 11
Sleek 109 1 199 14
Slide 281 10 27 5

In theory, we believe that the prover Cyclist can also prove all entailments in the category bolognesa, since
its underlying cyclic proof system is similar to our mutual induction proof system. More specifically, these two
proof systems have comparable inference rules dealing with heap predicates, and the discovery of downlinks in
the cyclic proof system is alike to the application of induction hypotheses in our mutual induction proof system.
However, the fact that Cyclist cannot prove any entailment in this category in the timeout of 120 seconds while
our prover Songbird canmight be due to the different proof search strategies employed by the two provers.We are
not aware in details how the proof search strategy of Cyclist is implemented in practice. It is also not mentioned
in related papers [BDP11, BGP12]. However, we believe that our current proof search strategy (Sect. 6), if can be
integrated into Cyclist, can improve the performance of this prover against the benchmark category bolognesa.

Regarding the proving time, Cyclist is averagely faster than Songbird when it spends about 0.41 seconds per
each proved entailment. The two provers Sleek and Spen are slightly behind Cyclist when they can respectively
prove 200/323 (61.9%) and 189/323 (58.5%) entailments. The last prover Slide can prove only 37/323 entailments
(11.5%). Table 1 also shows that Songbird outperforms other provers in almost all categories, except for doubly-ll.
In the doubly-ll category, we are behind solely Cyclist, the second best prover, by only 4/37 entailments in this
category. Songbird cannot prove 12/37 entailments in this doubly-ll category since they contain sophisticated
constraints in their heap and pure formulas. Our technique may require more effective generalization to handle
these unproved entailments.

In Table 2, we make a detailed comparison among Songbird and other provers. Specifically, the first column
(✓sb ✗o) shows the number of entailments that Songbird can prove valid whereas the others cannot. The second
column (✗sb ✓o) reports the number of entailments that can be proved by other tools, but not by Songbird. The
last two columns list the number of entailments that both Songbird and others can (✓sb ✓o) or cannot (✗sb ✗o)
prove. There are 71 (resp. 104, 109, and 281) entailments that can be proved by our tool, but not by Cyclist (resp.
Spen, Sleek, and Spen). Furthermore, Songbird can prove almost all entailments that can be proved by other
provers. There is only 1 (resp. 4, 5, and 10) over totally 323 entailments that can be proved by Sleek (resp. Spen,
Cyclist, and Slide) but not by Songbird. This result is encouraging, thanks to the proposed mutual induction
proof technique.

Automated mutual induction proof in separation logic 227

Table 3. Evaluation on the extended slrd ind entailment benchmark, with the participants Cyclist (Ccl), our prover Songbird (Sbd) and its
variant SongbirdSI (SbdSI)

slrd ind Bench Proved entailments Total time (s) Average time (s)
Category #ent Ccl SbdSI Sbd Ccl SbdSI Sbd Ccl SbdSI Sbd
ll/ll2 44 33 30 44 37.8 3.3 7.8 1.15 0.11 0.18
ll-even/odd 20 20 20 20 17.3 0.9 1.0 0.87 0.05 0.05
ll-left/right 20 20 20 20 13.6 0.7 0.8 0.68 0.03 0.04
misc 32 31 32 32 121.2 2.4 2.5 3.91 0.07 0.08
Total 116 104 102 116 189.9 7.2 12.1 1.83 0.07 0.10

Secondly, we would like to highlight the efficiency of mutual induction in our proof technique via a com-
parison between Songbird and its variant SongbirdSI, which exploits only induction hypotheses found within
a single proof path. This mimics the structural induction technique which explores induction hypotheses in
the same proof path. For this purpose, in our earlier work [Ta+16], we designed an entailment benchmark,
namely slrd ind, whose entailments are more complex than those in the slrd entl benchmark. For example, the
slrd ind benchmark contains an entailment lsEven(x , y) ∗ y �→z ∗ lsEven(z , t) |− ∃ u. lsEven(x , u) ∗ u �→t with
the predicate lsEven(x , y) denoting list segments with even length2. This entailment was inspired by the entail-
ment lsEven(x , y) ∗ lsEven(y, z) |− lsEven(x , z) in the problem 11.tst.smt2 of slrd entl, contributed by team
Cyclist. In this work, we improve and extend further this slrd ind benchmark with new entailments. 3 Entail-
ments in this benchmark are also categorized by their predicate types, including regular singly linked lists (ll/ll2),
linked lists with even or odd length (ll-even/odd) and linked list segments which are left- or right-recursively
defined (ll-left/right). In addition, entailments in the misc category involve all aforementioned linked list predi-
cates.

As shown in Table 3, SongbirdSI is able to prove 102/116 entailments (87.9%), slightly behind the second
best prover Cyclist, which can prove 104/116 entailments (89.7%). We do not list other provers Sleek, Spen and
Slide in this experiment since they cannot prove any entailment in the benchmark slrd ind. On the other hand,
Songbird, with full capability of mutual induction, can prove all 116 entailments in slrd ind (100%). In addition,
Songbird spends averagely only 0.10 seconds to prove an entailment. This running time is faster than the second
best prover Cyclist, which takes averagely 1.83 seconds to prove each entailment. The running time of Songbird
is only slightly slower than its variant SongbirdSI, which needs averagely 0.07 seconds for each proved entailment
(0.03 seconds faster than Songbird). A possible reason for the speedy performance of SongbirdSIis that it only
searches for applications of induction hypotheses recorded in a single proof path but not in an entire proof tree as
by Songbird. Consequently, SongbirdSIspends less time on discovering such induction hypothesis applications.
However, this feature also prevents SongbirdSIfrom utilizing potential hypotheses derived in other paths of the
proof tree. In fact, SongbirdSIcannot prove 14/116 entailments in the benchmark slrd ind, whereas Songbird can
prove all 116/116 entailments. This result is really encouraging as it shows the usefulness and essentials of our
mutual induction proof technique.

8. Related work

There has been considerable research on proving entailments in the literature of separation logic. A popular
approach is to pre-define inductive heap predicates to model specific types of the linked list and the tree data
structures. This approach is utilized byBerdine et al. [BCO04,BCO05], Piskac et al. [PWZ13], Bozga et al. [BIP10],
and Perez et al. [PR11, PR13]. The authors of these works provide specific syntax and semantics for predicates in
advance so that they can derive efficient techniques to handle these predicates when proving entailments. Since the
invented techniques are tied to certain types of pre-defined predicates, they might not be automatically extended
to reason about other inductive heap predicates.

2 The inductive definition of the predicate lsEven is similar to the ListE’s definition in Example 3.2.
3 The extended slrd entl benchmark is available at https://songbird-prover.github.io/mutual-induction/.

https://songbird-prover.github.io/mutual-induction/

228 Q.-T. Ta et al.

A more general approach is to consider classes of inductive heap predicates satisfying certain syntactic or
semantic restrictions, such as predicates with a bounded tree width property by Iosif et al. [IRS13, IRV14] or
predicates describing variants of the linked list data structure by Enea et al. [Ene+14]. These authors propose to
prove entailments by translating separation logic entailments into equivalent formulas in theories of automata
or graph. Thereby, they can employ developed proof techniques in automata and graph theories to prove the
translated formulas, and conclude about the validity of the original separation logic entailments. Nevertheless,
inductive heappredicates in this approachmight not be able to represent sophisticatedproperties of data structures
such arithmetic constraints about their size or elements’ content. These constraints are not directly supported by
the considered external theories of graph and automata.

To resolve the above expressiveness limitation, Nguyen and Chin et al. [Ngu+07, NC08, Chi+12], Qiu et
al. [Qiu+13, PQM14], and Enea et al. [ESW15] consider classes of user-defined inductive heap predicates, i.e.,
predicates which can be arbitrarily defined by users of verification and analysis systems. These authors propose
to prove entailments by using sequent-based proof systems. In their approaches, inductive heap predicates can
be handled by special inference rules that remove identical predicates from two sides of an entailment or unfold a
predicate by its definition. In general, the proof systems repeatedly apply these rules to simplify a goal entailment
until newly derived entailments do not contain any heap predicates in their antecedents or consequents. However,
this derivation might be infinite since inductive predicates can be unfolded unlimitedly. To handle such situation,
these works require users to provide supplementing lemmas to assist the proof systems to compose, decompose
or reorganize inductive heap predicates without using the unfolding rules. The aforementioned proof systems,
therefore, are not fully automated.

The above infinite derivation issue in sequent-based proof systems is addressed by interesting research of
Brotherston et al. [BDP11] and Chu et al. [CJT15]. These are also the closest to our work. In the first work
[BDP11], the authors propose the cyclic proof system which allows proof trees to contain cycles. Similar to
ours, this proof system also has inference rules to syntactically deal with heap predicates and pure constraints of
entailments. Furthermore, the discovery of a downlink in the cyclic proof system is analogous to the application of
an induction hypothesis in our mutual induction proof system. However, unlike our work, induction hypotheses
are not explicitly identified in the cyclic proof via applications of induction rules; instead, they are implicitly
obtained via the discovery of valid cycles in a proof tree.

In the second work, the authors of [CJT15] apply structural induction to reason about the recursive structures
of inductive heap predicates. Their proof system and ours share similar set of inference rules to handle heap
predicates and pure constraints, record and apply induction hypotheses. However, when applying induction
hypotheses, it performs a local check to ensure that predicates in the target entailments are substructures of
predicates in the entailments captured as hypotheses. This dynamicity in hypothesis generation enables multiple
induction hypotheses within a single proof path to be exploited. However, it does not admit hypotheses obtained
from different proof paths, as opposed to our proof system.

9. Limitation

In this section, we will discuss the limitation of our mutual induction proof system. There are two limitations as
follows. Firstly, our mutual induction proof system can prove that an entailment is valid, but it cannot conclude
if the entailment is invalid. More general, our proof system is an incomplete system. That is, it cannot always
decide whether a given entailment is valid or not. This drawback is also a disadvantage of any proof systems
for inductive theories containing arithmetic. More specifically, these inductive theories, even when their syntax is
restricted to contain only linear arithmetic, can represent any constraints in Peano arithmetic. For example, the
multiplication constraint x · y � z can be presented by an inductive predicate mult(x , y, z), which is recursively
defined using linear arithmetic as below:

mult(x , y, z) def� (x�0 ∧ z� 0) ∨ (x>0 ∧ mult(x−1, y, z−y)) ∨ (x<0 ∧ mult(x+1, y, z+y))

Automated mutual induction proof in separation logic 229

According to Gödel’s second incompleteness theorem [God92], every consistent axiomatic system which
includes Peano arithmetic cannot prove its own consistency. Consequently, there does not exist any proof system
which can either prove or disprove the validity of any arbitrary formula or entailment containing inductive
predicates and linear arithmetic. The incompleteness issue is also carefully addressed in the work of Alan Bundy
[Bun01]. Interested readers are invited to refer to it for more details.

Secondly, our proof system currently does not perform necessary generalization of induction hypotheses.
We recall that when proving an entailment, the proof system directly records it as an induction hypothesis and
unfolds an appropriate inductive heap predicate to derive new entailments. Nevertheless, this induction hypothe-
sis might be too sophisticated to be efficiently handled by an inductive prover. For example, it might contain
numerous inductive heap predicates, or complex pure constraints, which overwhelm the inductive hypothe-
sis application step. In fact, such sophisticated entailments appear in the benchmark slrd entl of SL-COMP
2014. For example, each entailment in the test cases dll-spaghetti.smt2, dll-spaghetti-existential.smt2, dll2-
spaghetti.smt2, and dll2-spaghetti-existential.smt2 in this benchmark contains 42 inductive heap predicates
of the two predicate symbols DLL plus and DLL plus rev which model doubly linked list data structures. These
entailments currently cannot be proved by either our prover Songbird or the prover Cyclist within the timeout
of 120 seconds. On the other hand, we believe that Songbird would be able to prove such sophisticated entail-
ments, if it could discover more general entailments, such as DLL plus(x , y, z , t) |− DLL plus rev(x , y, z , t) or
DLL plus rev(x , y, z , t) |− DLL plus(x , y, z , t). In essence, these new entailments show that the two inductive
heap predicates DLL plus(x , y, z , t) and DLL plus rev(x , y, z , t) are semantically equivalent. Hence, they can
be used as supporting lemmas to transform the original entailments into new entailments containing only one
kind of heap predicate, which can be easily proved by both Songbird or Cyclist. Certainly, the discovery of the
supporting lemmas is desirable. We have also independently investigated and proposed a framework to automat-
ically synthesize such supporting lemmas in a recent work [Ta+18]. In the future, we wish to integrate this lemma
synthesis framework into our proposed mutual induction proof system to strengthen the capability of the latter
system in proving entailments.

10. Conclusion

We have proposed a mutual induction principle and developed a proof system to automatically prove separation
logic entailments. In particular, we have shown that mathematical induction can perform well on the size of the
heapmodel of separation logic entailments. Our approach allows a goal entailment and other entailments derived
during the proof search to be used as hypotheses tomutually prove each other. Thismutual hypothesis application
theoretically leads to the discovery of more succinct proof trees. We also demonstrate the effectiveness of our
induction proof by experimenting on three entailment benchmarks, in which our prototype prover Songbird
outperforms the state-of-the-art separation logic provers.

In the future, we would like to empower our proof system with the ability to generalize induction hypotheses
as discussed earlier in Sect. 9. We believe that if this feature is well-developed, it will improve the completeness of
our proof system and help Songbird to prove more entailments in the slrd entl benchmark. Lastly, we also wish
to integrate our proof system into a practical verification system. We believe that this integration will open up
more opportunities to automatically find memory bugs and verify the memory safety of computer programs at
large scale.

Acknowledgements

We would like to thank the anonymous reviewers of the Formal Aspect of Computing journal for the careful
reading and the constructive comments on our work. The first author wishes to thank Dr. Alwen Fernanto Tiu
and an anonymous reviewer of LICS 2018 for the suggestion of using the term matching, instead of the term
unification, when describing the induction hypothesis application. This research is partially supported by anNUS
research Grant R-252-000-553-112 and an MoE Tier-2 Grant MOE2013-T2-2-146.

230 Q.-T. Ta et al.

References

[BCI11] Berdine J, Cook B, Ishtiaq S (2011) SLAyer: memory safety for systems-level code. In: International conference on computer
aided verification (CAV), pp 178–183

[BCO04] Berdine J, Calcagno C, O’Hearn PW (2004) A decidable fragment of separation logic. In: International conference on foun-
dations of software technology and theoretical computer science (FSTTCS), pp 97–109

[BCO05] Berdine J, Calcagno C, O’Hearn PW (2005) Symbolic execution with separation logic. In: Asian symposium on programming
languages and systems (APLAS), pp 52–68

[BDP11] Brotherston J, Distefano D, Petersen RL (2011) Automated cyclic entailment proofs in separation logic. In: International
conference on automated deduction (CADE), pp 131–146

[BGP12] Brotherston J, Gorogiannis N, Petersen RL (2012) A generic cyclic theorem prover. In: Asian symposium on programming
languages and systems (APLAS), pp 350–367

[BIP10] Bozga M, Iosif R, Perarnau S (2010) Quantitative separation logic and programs with lists. J Autom Reason 45(2):131–156
[Bro+16] Brotherston J, Gorogiannis N, Kanovich MI, Rowe R (2016) Model checking for Symbolic-Heap Separation Logic with

inductive predicates. In: Symposium on principles of programming languages (POPL), pp 84–96
[Bro07] Brotherston J (2007) Formalised inductive reasoning in the logic of bunched implications. In: International static analysis

symposium (SAS), pp 87–103
[Bun01] Bundy A (2001) The automation of proof by mathematical induction. In: Robinson JA, Voronkov A (eds) Handbook of

automated reasoning, vol 2. Elsevier, MIT Press, pp 845–911
[Cal+15] Calcagno C, DistefanoD, Dubreil J, Gabi D, Hooimeijer P, LucaM, O’Hearn PW, Papakonstantinou I, Purbrick J, Rodriguez

D (2015) Moving fast with software verification. In: NASA international symposium on formal methods (NFM), pp 3–11
[Chi+12] Chin W-N, David C, Nguyen HH, Qin S (2012) Automated verification of shape, size and bag properties via user-defined

predicates in separation logic. Sci Comput Program 77(9):1006–1036
[CJT15] Chu D-H, Jaffar J, Trinh M-T (2015) Automatic induction proofs of data-structures in imperative programs. In: Conference

on programming language design and implementation (PLDI), pp 457–466
[Ene+14] Enea C, Lengál O, Sighireanu M, Vojnar T (2014) Compositional entailment checking for a fragment of separation logic. In:

Asian symposium on programming languages and systems (APLAS), pp 314–333
[ESW15] Enea C, Sighireanu M, Wu Z (2015) On automated lemma generation for separation logic with inductive definitions. In:

International symposium on automated technology for verification and analysis (ATVA), pp 80–96
[God92] Godel K (1992) On formally undecidable propositions of principia mathematica and related systems (Meltzer B, Trans.).

Dover Publications, Mineola. ISBN: 0486669807
[Har09] Harrison J (2009) Handbook of practical logic and automated reasoning, 1st edn. Cambridge University Press, New York.

ISBN: 0521899575, 9780521899574
[IRS13] Iosif R, Rogalewicz A, Simácek J (2013) The tree width of separation logic with recursive definitions. In: International

conference on automated deduction (CADE), pp 21–38
[IRV14] Iosif R,RogalewiczA, Vojnar T (2014)Deciding entailments in inductive separation logic with tree automata. In: International

symposium on automated technology for verification and analysis (ATVA), pp 201–218
[KN87] Kapur D, Narendran P (1987) Matching, unification and complexity. ACM SIGSAM Bull 21(4):6–9
[MB08] De Moura LM, Bjørner N (2008) Z3: an efficient SMT solver. In: International conference on tools and algorithms for

construction and analysis of systems (TACAS), pp 337–340
[NC08] Nguyen HH, Chin W-N (Wei-Ngan) Enhancing program verification with lemmas. In: International conference on computer

aided verification (CAV), pp 355–369
[Ngu+07] Nguyen HH, David C, Qin S, Chin W-N (2007) Automated verification of shape and size properties via separation logic. In:

International conference on verification, model checking, and abstract interpretation (VMCAI), pp 251–266
[PQM14] PekE,QiuX,MadhusudanP (2014)Natural proofs for data structuremanipulation inCusing separation logic. In: Conference

on programming language design and implementation (PLDI), p 46
[PR11] Pérez JAN, Rybalchenko A (2011) Separation Logic + superposition calculus = heap theorem prover. In: Conference on

programming language design and implementation (PLDI), pp 556–566
[PR13] Pérez JAN, Rybalchenko A (2013) Separation logic modulo theories. In: Asian symposium on programming languages and

systems (APLAS), pp 90–106
[PWZ13] Piskac R,Wies T, Zufferey D (2013) Automating separation logic using SMT. In: International conference on computer aided

verification (CAV), pp 773–789
[Qiu+13] Qiu X, Garg P, Stefanescu A, Madhusudan P (2013) Natural proofs for structure, data, and separation. In: Conference on

programming language design and implementation (PLDI), pp 231–242
[Rey02] Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: Symposium on logic in computer science

(LICS), pp 55–74
[Rey08] Reynolds JC (2008) An introduction to separation logic. In: Lecture notes for the PhD fall school on logics and semantics of

state, Copenhagen. Retrieved on 2017, March 16th, 2008. http://www.cs.cmu.edu/~jcr/copenhagen08.pdf
[SC16] Sighireanu M, Cok DR (2016) Report on SL-COMP 2014. J Satisf Boolean Model Comput 9:173–186
[Ta+16] Ta Q-T, Le TC, Khoo S-C, Chin W-N (2016) Automated mutual explicit induction proof in separation logic. In: FM 2016:

Formal methods—21st international symposium, Limassol, Cyprus, 9–11 Nov 2016, Proceedings. pp 659–676
[Ta+18] Ta Q-T, Le TC, Khoo S-C, Chin W-N (2018) Automated lemma synthesis in symbolic-heap separation logic. In: Symposium

on principles of programming languages (POPL), pp 9:1–9:29

Received 10 September 2017
Accepted in revised form 5 September 2018 by Connie Heitmeyer,Ana Cavalcanti, John Fitzgerald, and Stefania Gnesi
Published online 11 October 2018

http://www.cs.cmu.edu/~jcr/copenhagen08.pdf

	Automated mutual induction proof in separation logic
	Abstract
	1 Introduction
	2 Motivating example
	3 The symbolic-heap separation logic fragment
	4 A mutual induction principle for entailment proof
	5 The mutual induction proof system
	5.1 Logical rules
	5.2 Induction rules
	5.3 A general proof search procedure
	5.4 Soundness and completeness

	6 Implementation
	7 Experimental result
	8 Related work
	9 Limitation
	10 Conclusion
	Acknowledgements
	References

