
Proving Conditional Termination for Smart Contracts
Ton Chanh Le

Stevens Institute of Technology

Lei Xu, Lin Chen, Weidong Shi

University of Houston

ABSTRACT
Termination of smart contracts is crucial for any blockchain sys-

tem’s security and consistency, especially for those supporting

Turing-complete smart contract languages. Resource-constrained
blockchain systems, like Ethereum and Hyperledger Fabric, could

prevent smart contracts from terminating properly when the pre-

allocated resources are not sufficient. The Zen system utilizes the

dependent type system of the programming language F* to prove

the termination of smart contracts for all inputs during compila-

tion time. Since the smart contract execution usually depends on

the current blockchain state and user inputs, this approach is not

always successful. In this work, we propose a lazy approach by

statically proving conditional termination and non-termination of a

smart contract to determine input conditions under which the con-

tract terminates or not. Prior to the execution of the smart contract,

the proof-carrying blockchain systemwill check that its current state

and the contract’s input satisfy the termination conditions in order

to determine if the contract is qualified (i.e., eventually terminating)

to run on the chain.

CCS CONCEPTS
• Software and its engineering → Software verification; Au-
tomated static analysis;

KEYWORDS
blockchain, smart contracts, termination, non-termination

ACM Reference Format:
Ton Chanh Le and Lei Xu, Lin Chen,Weidong Shi. 2018. Proving Conditional

Termination for Smart Contracts. In BCC’18: The 2nd ACM Workshop on
Blockchains, Cryptocurrencies and Contracts, June 4, 2018, Incheon, Republic
of Korea.ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3205230.

3205239

1 INTRODUCTION
Smart contracts, first defined by Szabo [11], are computer programs

that encode business logics and rules to process transactions in a

blockchain system. Beside functional correctness, termination of

smart contracts is also crucial for any blockchain system’s secu-

rity and consistency. Unlike other types of computer programs in

which non-termination may be an expected behavior (e.g., reactive

systems), non-termination of smart contracts should be consid-

ered as liveness bugs since accidentally allowing a non-terminating

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

BCC’18, June 4, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5758-6/18/06. . . $15.00

https://doi.org/10.1145/3205230.3205239

smart contract to execute on the blockchain will definitely make the

whole system collapse. This non-terminating smart contract will

run on every node in the decentralized system forever. Any indi-

vidual attempt to terminate its computation will make the network

consensus broken since nodes cannot agree on the final outcome of

these interrupted computations. The Bitcoin system [9] avoids this

problem by allowing only a Turing-incomplete language (without
supporting loops and recursion) for their scripts. However, loops

and recursion are unavoidable if you want to construct an ecosys-

tem supporting more complex applications and rich features; for

example, to develop an application with recurring payment.

Currently, the blockchain platform Ethereum [1] relies on a

transaction fee system (known as gas) to prevent smart contracts

run forever on its Turing-complete virtual machine with financial

penalties. When a user invokes an on-chain smart contract, he/she

has to specify an amount of gas to pay for the contract’s execution.

If the pre-specified gas runs out before the contract’s normal ter-

mination, the execution will be interrupted by an exception and

its computation will be reverted to the initial state. On the other

hand, Hyperledger Fabric [2] and other private blockchain systems,

which do not offer cyptocurrencies in their ecosystems, use the

timer to constrain the execution time of smart contracts. We call

these systems as resource-constrained blockchain systems. The ap-

proaches of these systems could prevent a smart contract from

terminating properly when the pre-allocated resource (either gas

or time) is not sufficient. With the presence of loops and recursive

calls, predicting an accurate amount of resource needed for the

contract’s execution is not an easy task.

The Zen system [4] proposes another approach to utilize F* [10]

as the programming language of their smart contracts. F* is a func-

tional programming language with a strong type system designed

for program formal verification. The type system of F* is expressive

enough to precisely and concisely specify various security, func-

tional correctness properties, as well as termination of programs.

The F* type checker proves that the programs meet their speci-

fications during compilation time. Therefore, if a smart contract

in F* is well-typed, it can be safely deloyed and executed on the

blockchain system. However, the F* system can only automatically

infer ranking functions for proving the termination of simple pro-

grams. For complex programs, like the Ackermann function
1
, the

system requires users to manually provide valid ranking functions

to support the termination proofs. In addition, since the smart con-

tract execution usually depends on the current blockchain state

and user inputs, the users have to also determine the preconditions

in which the contracts terminate. Again, these both tasks are not

straightforward.

To address these shortcomings in proving termination of smart

contracts, we propose a lazy approach by statically proving their

conditional termination and non-termination. In this approach, when
a smart contract is submitted to the blockchain, the system first

1
https://en.wikipedia.org/wiki/Ackermann_function

Session: Paper Session 3 BCC’18, June 4, 2018, Incheon, Republic of Korea

57

https://doi.org/10.1145/3205230.3205239
https://doi.org/10.1145/3205230.3205239
https://doi.org/10.1145/3205230.3205239
https://en.wikipedia.org/wiki/Ackermann_function

BCC’18, June 4, 2018, Incheon, Republic of Korea Ton Chanh Le et al.

automatically determines preconditions of the contract’s inputs

and the chain states under which its execution terminates or not.

These conditions, in the form of logical formulas, are verifiable and

then recorded into the blockchain as a metadata of the contract.

Later, when the contract is invoked by a transaction, the systemwill

check if the current chain state and the contract’s input satisfy any

recorded termination precondition. If they are, then the contract

are safely executed since under this condition, we can assure that

the contract’s execution will eventually terminate in a finite time.

Related work. There have been several approaches to prove con-

ditional termination and non-termination of imperative programs.

The problem was first addressed by Cook et al. [3], which deter-

mines termination preconditions of a program from bounded, but

not decreasing, potential ranking functions. Later, Le et al. [7, 8]

develop HipTNT+, a modular termination and non-termination

analyzer, by utilizing abductive reasoning and case analysis to in-

crementally construct a complete summary of both terminating and

non-terminating behaviors of each method in a program. Moreover,

the outcomes of HipTNT+ can be stored in the form of formal speci-

fications of a verification framework [6]. This framework facilitates

the validation of an initial state of a program against its termination

specification to decide on acceptance of this terminating state or to

explain why this state is rejected due to non-termination.

2 BACKGROUND
We briefly introduce the background of blockchain systems, smart

contracts, and concepts related to the termination problem such as

ranking functions and termination specification language.

2.1 Blockchain and smart contracts
The concept of a blockchain systemwas first introduced byNakamoto

[9] in 2008. Typically, a blockchain is usually defined as an open,

distributed ledger that records transactions between parties. A

blockchain is implemented as a decentralized system of a chain of

blocks. Each block contains some information, a timestamp, and

more importantly, a hash pointer to securely link to its precedence

block using cryptography. These hash pointers, together with a

consensus protocol on the sequence and content of blocks, ensure

the system’s consistency and immutability.

Smart contract is an important feature of many blockchain sys-

tems. These smart contracts are computer programs stored on a

blockchain to process transactions based on embedded business

logics and rules. Szabo [11] defined a general concept of smart

contracts, as recalled in Definition 2.1.

Definition 2.1 (Smart contract). A smart contract is a set of promises,

specified in a digital form, including protocols within which the

parties perform on these promises.

2.2 Proving termination and non-termination
A traditional method for proving program termination is to find

an appropriate well-founded relation, called ranking function, that

maps program states to a well-ordered domain [12]. Since the well-

founded relation contains no infinite descending chains of elements,

the program execution does not have any infinite state sequences,

thus its termination can be concluded. We recall the formal defini-

tion of ranking functions as follows:

Definition 2.2 (Ranking function). Given a program P = (S,R)
defined as a pair of a set of states S and a transition relationR ⊆ S×S .
A ranking function is a mapping r : S 7→ A from the set of states S
into awell-ordered set (A, ⪯) such that for each transition (s, s ′) ∈ R,
r (s) ≻ r (s ′) and r (s) ⪰ 0, where 0 is the least element of A.

On the other hand, in order to show that a loop or a recursive

method does not terminate, we prove that there exist conditions in

which its exit points are unreachable [5, 7]. Le et al. [6] introduce a
specification logic and a verification framework that can specify and

verify both terminating and non-terminating behaviors of programs.

This logic introduces three temporal predicates Term[R], Loop, and
MayLoop to denote definite termination, definite non-termination,

and possible non-termination of programs, given that R is a ranking

function with a well-ordered co-domain, as defined in Definition 2.2.

The semantics of these predicates are defined based on a resource

capacity predicate RC⟨l ,u⟩ with the lower and upper bound, in

terms of program execution length. That is, a program terminates

iff it has a finite upper bound on its execution length. On the other

hand, the program does not terminate iff the lower bound of its

execution length is infinite. Since this specification logic has a well-

defined semantics and is verifiable, specifications in this logic can

be embedded into a blockchain to validate the termination and

non-termination of programs.

3 OVERVIEW

contract Ackermann {

function ack(int m, int n) returns (int) {

if (m == 0) return n+1;

else if (n == 0) return ack(m-1, 1);

else return ack(m-1, ack(m, n-1));

}

}
Figure 1: The Ackermann smart contract

Consider the above smart contract Ackermann in a Solidity-like

language (Figure 1), whose the recursive function ack is an imple-

mentation of the well-known Ackermann function
2
. The function

does not terminate when the parameterm or n is negative, that is

m < 0 ∨ n < 0. In the other case whenm ≥ 0 ∧ n ≥ 0, the function

terminates but with a deep level of recursion, even for small inputs.

Therefore, without knowing these conditions beforehand, people

cannot determine if the program terminates or not by observing its

run-time execution. The termination of this function can be proved

with the lexicographic ranking function [m,n]. Such terminating

and non-terminating behaviors of the function ack can be specified

in a logical specification language and verified [6], as follows.

case {
m < 0 ∨ n < 0 → requires Loop ensures false;
m ≥ 0 ∧ n ≥ 0→ requires Term[m,n] ensures res ≥ n + 1; }

The above specification denotes two distinct cases of the pro-

gram’s termination (i.e., m ≥ 0 ∧ n ≥ 0) and non-termination

(i.e.,m < 0 ∨ n < 0). In each case, we provide a pair of pre- and

post-condition (requires and ensures, respectively), in which the

2
https://en.wikipedia.org/wiki/Ackermann_function

Session: Paper Session 3 BCC’18, June 4, 2018, Incheon, Republic of Korea

58

https://en.wikipedia.org/wiki/Ackermann_function

Proving Conditional Termination for Smart Contracts BCC’18, June 4, 2018, Incheon, Republic of Korea

termination and non-termination of the method are specified in the

pre-condition since they encode the initial resource capacity for

the method’s future execution. The correctness of this specification

can be statically verified against the program’s source code by the

verification framework developed by Le et al. [6]. Moreover, we

can also utilize their inference system [7, 8] to analyze the program

and derive such specification automatically.

This specification indicates that the method ackmay or may not

terminate, which depends on the user inputsm and n when this

method is invoked. A blockchain system could utilize the informa-

tion of the derived termination and non-termination conditions in

such specifications to execute methods in smart contracts smarter.

That is, the system should not allow non-terminating methods to

run. On the other hand, terminating methods would be executed

with or without resource constraints based on the system’s policy.

In the next section, we will elaborate our approach to construct a

smarter execution model of smart contracts in blockchain systems.

4 A SMARTER EXECUTION MODEL FOR
SMART CONTRACTS

In this work, we first derive a specification capturing both termi-

nating and non-terminating behaviors of each function in a smart

contract submitted to the blockchain system. These specifications

are also recorded into the chain as a metadata of the smart con-

tract. They will be used later to validate user inputs before execut-

ing the contract. However, discovering these specifications with

termination and non-termination conditions, as well as ranking

functions supporting the termination proofs, is not straightforward.

Therefore, we utilize available literature works, such as [7], for this

specification inference. Based on the meta-information about the

termination and non-termination of a smart contract, we propose

a new execution model for the smart contract computation in a

blockchain system.

Given the current execution context ρ, which captures the user

inputs and the internal state of the blockchain. This context can be

observed by a real-time monitor integrated inside the blockchain

system. Assume that under this context, the system will execute a

loop or a method, whose specification is as follows.

case { ci → requires Pi ensures Qi }
n
i=1

In this specification, the case conditions c1, ..., cn have two prop-

erties:

(1) Mutual disjointness: ∀i , j . ci ∧ c j =⇒ false
(2) Completeness: true =⇒ c1 ∨ ... ∨ cn

Theorem 4.1 (Determinism Choice). Given a set of case condi-
tions {c1, ..., cn } and a current context ρ. There is exactly one case
condition ci which is satisfied by the current context ρ, i.e., ρ =⇒ ci .

Without the loss of generality, we assume that ci is the unique
case condition which the context ρ satisfies. Consider three sce-

narios of the pair of pre- and post-condition Pi and Qi associating

with the condition ci .

Scenario 1 (Pi ≡ Loop). In this scenario, a non-terminating loop

or method in the smart contract is being invoked under the current

context ρ. Therefore, the blockchain system must prevent this invo-

cation and terminate the execution of the smart contract. This early

detection and prevention of non-terminating contract execution

also help current resource-constrained systems, like Ethereum, save

computation resources uselessly spent on this execution. In this

case, the system will throw an exception with the current context

and the satisfied non-termination condition as an explanation for

this interruption. Moreover, all effects of the current execution

have to be reversed, like what happens when an out-of-resource

exception occurs in the current resource-constrained blockchain

systems.

Scenario 2 (Pi ≡ Term[r]). In this scenario, we should allow this

terminating loop or method to run. However, if its execution is

suddenly interrupted with an out-of-resource exception, the users
can be recommended to re-run the contract with more resources

by their own risk. Or even better, the blockchain system can rely

on the contract profiling of the initial context ρ and the context

ρ ′ at the time when the exception occurs to estimate the needed

amount of resources for the contract terminating properly based

on the ranking function r .

Scenario 3 (Pi ≡ MayLoop). In a resource-constrained blockchain

system, the users can still run this possibly non-terminating pro-

gram by their own risk and the out-of-resource exception may or

may not occur. In other systems without any constraints on the

execution resources, the invocation of this loop or method is pro-

hibited because it may damage the system’s consistency, unless the

users can provide an evidence (e.g., a ranking function) that the

program terminates.

5 CONCLUSION
In this paper, we propose an initial idea on proving termination

and non-termination of smart contracts and how to use them to

improve the execution model of the smart contracts in blockchain

systems. In future, we would like to implement this proposal and

evaluate its efficiency on a real-world blockchain system.

REFERENCES
[1] Vitalik Buterin. 2014. Ethereum: A next-generation smart contract and de-

centralized application platform. URL https://github. com/ethereum/wiki/wiki/%
5BEnglish% 5D-White-Paper (2014).

[2] Christian Cachin. 2016. Architecture of the Hyperledger blockchain fabric. In

Workshop on Distributed Cryptocurrencies and Consensus Ledgers.
[3] Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly

Sagiv. 2008. Proving Conditional Termination. In CAV. 328–340.
[4] Nathan Cook. 2017. ZEN: Technical notes on a financial engine. (2017).

[5] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko,

and Ru-Gang Xu. 2008. Proving non-termination. In POPL. 147–158.
[6] Ton Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin. 2014. A

Resource-Based Logic for Termination and Non-termination Proofs. In ICFEM.

267–283.

[7] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termination and

non-termination specification inference. In PLDI. 489–498.
[8] Ton Chanh Le, Quang-Trung Ta, andWei-Ngan Chin. 2017. HipTNT+: A Termina-

tion and Non-termination Analyzer by Second-Order Abduction - (Competition

Contribution). In TACAS. 370–374.
[9] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf. (2008).

[10] Pierre-Yves Strub, Nikhil Swamy, Cédric Fournet, and Juan Chen. 2012. Self-

certification: bootstrapping certified typecheckers in F* with Coq. In POPL. 571–
584.

[11] Nick Szabo. 1997. The idea of smart contracts. Nick Szabo’s Papers and Concise
Tutorials (1997).

[12] Alan Turing. 1989. The Early British Computer Conferences. MIT Press, Cam-

bridge, MA, USA, Chapter Checking a Large Routine, 70–72.

Session: Paper Session 3 BCC’18, June 4, 2018, Incheon, Republic of Korea

59

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and smart contracts
	2.2 Proving termination and non-termination

	3 Overview
	4 A Smarter Execution Model for Smart Contracts
	5 Conclusion
	References

